
Embarrassingly parallelizeable preprocessing for
deterministic multiversion concurrency control

Sylvan Zheng
Yale University

sylvan.zheng@yale.edu

Advisor Daniel J. Abadi
Yale University

dna@cs.yale.edu

Advisor Jose M. Faleiro
Yale University

jose.faleiro@yale.edu

ABSTRACT
Multiversion concurrency algorithms offer many advantages
in database management systems, most notably the abil-
ity to improve throughput because read-write conflicts can
be avoided. Traditionally the improvement in performace
must be paid by sacrificing serializability in the database
system. Fully serializable multiversion systems must signif-
icantly constrain the permitted read and write operations,
often leading to performance significantly worse than single-
version systems. However, recent advances in the literature
propose novel, highly performant algorithms that are both
multiversioned and serializable.

This paper proposes an improvement to the previously pro-
posed BOHM system, removing an important scalability
bottleneck in the previous design that limited the ability
of the system to concurrently preprocess transactions before
passing them to the next stage of the BOHM pipeline. The
improvement adds a simple preprocessing layer to the ar-
chitecture that is highly parallelizable and significantly im-
proves the throughput potential of the BOHM system.

1. INTRODUCTION
Databases that use multiversion concurrency control algo-
rithms maintain multiple copies, or versions, of all database
records (as opposed to other systems which only maintain
a single copy of each data record and overwrite it as neces-
sary). The multiversion system can thus allow parallel reads
and writes to take place, as long as the proper bookkeeping
is done to ensure that the writer and reader are accessing
their relevant versions. As memory (especially main mem-
ory) becomes cheaper, multiversioned systems have seen a
corresponding increase in use.

However, the additional bookkeeping required by multiver-
sioned systems causes a severe drop in concurrent perfor-
mance. Many modern multiversioned systems impose a less
strict demand on serializability (known as snapshot isola-
tion) in order to compensate for this performance cost. Un-

fortunately, snapshot isolation can suffer from certain seri-
alizability violations, such as the write-skew anamoly which
results in a database state that could not have been reached
by any serial execution order. However, recently the BOHM
algorithm has been introduced, a multiversion concurrency
system that is both fully serializable and performant [1].

The Bohm system introduces a wholly new system based
on intra-transaction parallelism and separation of versioning
and execution concerns. This allows each Bohm thread to
operate almost entirely with no coordination required with
other threads, greatly increasing parallelism. The key is-
sue that this paper attempts to address is the fact that the
lack of inter thread communication means that a nontriv-
ial amount of identical work is performed across multiple
threads, effectively being executed in serial order and cre-
ating a scalability bottleneck. The Bohm architecture as
relevant to this paper is summarized in greater detail in sec-
tion 2. The curious reader is referred to the full paper for
more [1].

2. BOHM SYSTEM DESIGN
Bohm is separated into two main layers - the scheduling
or concurrency control layer, and the execution layer. The
threads of each layer partition the database records among
themselves, so that the work done by one thread will be
guaranteed to not affect the others. Transactions are pro-
cessed in each layer in batches, thus amortizing the cost
of synchronization between the different layers. This also
removes the need for expensive, synchronized central times-
tamp allocation.

The BOHM algorithm guarantees serializability by requiring
the full writeset of the transaction to be declared prior to
processing - in this way the system can pre-emptively process
and schedule each transaction deterministically according to
the contents of its writesets and readsets. The scheduling
layer can thus create empty versions before the transaction
is actually executed. When the execution layer receives the
same transaction, it is guaranteed that the proper version
numbers have already been allocated and assigned.

However, the issue lies in the fact that every thread in the
scheduling layer must nevertheless examine each item in ev-
ery transaction in every batch that passes through the sys-
tem in order to detremine whether or not that item falls in
the domain of the given partition. Since this identical work
is performed by every scheduling thread, in effect all par-



allelism is lost and a scalability bottleneck appears. This
paper introduces a third layer in addition to the existing
scheduling and execution layers, a preprocessing layer that
concurrently analyzes transactions and routes them to the
relevant scheduler threads in order to eliminate this bottle-
neck.

3. SYSTEM DESIGN
The new preprocessing layer is placed first in the transaction
processing pipeline, ahead of the scheduling and execution
layers. Each preprocessor worker thread works on its own
batch independently, ensuring only minimal coordination is
needed between threads and maximizing potential parallel
performance.

3.1 The Process of Preprocessing
In order for the execution layer to successfully synchronize
with the scheduling layer, each scheduling worker thread
needs to receive the same batch object. In order to avoid
unnecessary iteration in addition to memory management
headaches, we attach to each batch and transaction a single
data structure indicating exactly which items and transac-
tions are relevant to any given partition.

Each transaction is assigned an array with size of the number
of partitions, readstarts and writestarts. ∗starts[i] then
indicates the index within readset or writeset of the first
read or write item that is relevant to the ith partition. Since
each item can only belong to one partition, each transaction
item is assigned an integer field next that simply holds the
value of the next index of readset or writeset that is relevant
to the partition. The next value of the last item is −1. It
is then relatively easy for the scheduler layer to follow this
linked list and only examine keys that are relevant to it,
completely skipping over any that are not.

The problem of knowing which transactions to look at within
a batch are solved in a similar way. Each transaction con-
tains a linking array next also sized to the number of par-
titions. Since each batch is totally ordered, a transaction
can be uniquely identified within a batch by its array index
within the batch object. The entry next[i] then indicates
the index of the next transaction within the batch that con-
tains keys that are relevant to partition i. Each scheduling
thread can thus examine precisely those transactions that
are relevant to it.

One concern is that the shared memory accesses (since each
of these intial array lists are allocated in the same block)
create potential for cache coherency problems, since multi-
ple threads are competing to access the same cache line that
holds the readstarts or writestarts. Further consideration
and experimentatino is needed to determine the full extent
to which cache problems as outlined here can negatively af-
fect the system’s performance.

3.2 Organizing the Preprocessing Threads
A nontrivial concern is that of how to organize the threads
within the preprocessing layer. It is critically important to
maintain the deterministic nature of the system; batches
must be output to the scheduling layer in the same order
that they arrive in. If preprocessor threads are to be able to

process batches in parallel then some kind of coordination
is needed to preserve this total ordering.

This issue is solved with the use of a leader-worker archi-
tecture. The leader thread’s primary job is to simply hand
off incoming batches to the worker that is next in line in a
round robin fashion. The leader also maintains a reference
to the worker whose batch is required next for output, pe-
riodically checking if it is ready to be passed along to the
scheduling layer. In this way a slow preprocessor thread only
slightly hinders the flow of data; all other worker threads can
continue working and simply buffer their batches in an out-
put queue while they wait for the leader to pick them up.
Meanwhile the leader can still listen for incoming batches
and distribute them to worker threads as necessary, ensur-
ing progress continues even in the face of one slow worker
thread.

The main disadvantage of this approach is that the leader
thread cannot actually perform any work, so a minimum
of two preprocessor threads are needed to do complete the
task. However, with the advent of machines with extremely
high core counts we expect this to have a relatively negligible
effect on overall performance.

4. EXPERIMENTAL RESULTS
All experiments were run on an x86 64 Intel(R) Xeon(R)
CPU E5-2650 v3 2.30GHz machine with 10 cores.

4.1 Parallelizable Preprocessing
The first set of experiments aim to evaluate the paralleliz-
ability and performance of the preprocessing layer in iso-
lation. This paper’s main contribution is the introduction
of a preprocessing layer that shows minimal overhead costs
for additional threads and continuing performance gains as
threads are added to the system.

0 2 4 6 8 10
0

4

8

12

16

20

24

Preprocessing worker threads

T
h
ro

u
g
h
p
u
t

(m
il
li
o
n
s

o
f

tx
n
s/

se
c)

While not quite linear in nature (a slight taper off can be
observed starting at approximately five worker threads), the
data shows consistent gains in performance as threads are
added to the system. Further exploration of multi-tiered
distribution systems on machines with higher core counts
may offer further insight into the layer performance.



4.2 End-to-End testing
For the second round of experiments we compare the perfor-
mance of the new three layer system to that of the old two
layer system across all transaction processing stages. Ini-
tial results show substantial improvement in the new system
with parallelized preprocessing abilities.

0 2 4 6
0

200

400

600

800

Preprocessing worker threads

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s

o
f

tx
n
s/

se
c)

Throughput comparison - 2 worker threads, 2 scheduler threads

New system (parallel preprocessing)

Old system (serial preprocessing)

Here we see that the new system even with a single worker
thread (effectively performing preprocessing work in serial)
offers a near 50% throughput advantage over the old sys-
tem. Also interesting is the observation that the perfor-
mance does not significantly improve as more preprocessor
worker threads are added to the system.

5. CONCLUSIONS AND FUTURE WORK
Introducing a dedicated preprocessing layer significantly im-
proves the overall performance of the Bohm system. The
preprocessing layer itself is simple, relatively thread-local,
and highly parallelizable. The work done by the preprocess-
ing thread significantly reduces the workload of the schedul-
ing layer, which can be seen by the fact that throughput
is almost 50% higher even with a single, serial preprocess-
ing thread. It is interesting to note however that the over-
all impact of increasing preprocessing parallelism is more
or less negligible, especially after 2-3 worker threads. We
hypothesize that it is because of the preprocessing layer’s
relatively small workload compared to the work undertaken
by the scheduling and execution layers that the capacity
of the scheduling and execution threads become the main
bottleneck of the system. Adding additional preprocessing
threads thus does not further improve performance.

Because our testing machine only has 10 cores it may be
illuminating to repeat these tests with higher counts of both
scheduler and execution threads. In this way a more direct
measurement can be taken of the impact of the preprocessing
layer under the high levels of concurrency for which it was
designed.

6. REFERENCES

[1] D. Abadi and J. Faleiro. Rethinking serializable
multiversion concurrency control. VLDB, 2015.


